12 N β^+ decay:11.000 ms 1981Ka31,2009Hy01 | | History | | | |-----------------|--|--------------------|------------------------| | Type | Author | Citation | Literature Cutoff Date | | Full Evaluation | J. H. Kelley, J. E. Purcell and C. G. Sheu | NP A968, 71 (2017) | 1-Jan-2017 | Parent: ${}^{12}\text{N}$: E=0.0; J $^{\pi}$ =1+; T_{1/2}=11.000 ms 16; Q(β +)=17338.1 10; $\%\beta$ + decay=100.0 ¹²N-Q(β^+): From (2017Wa10). $^{12}\text{N-J}^{\pi}$, $T_{1/2}$: From Adopted Levels for ^{12}N in ENSDF database. 1972Al31: 12 N, measured $\beta\gamma$ -coin. Deduced log ft, β -branching. 1974Mc11: 12 N,measured E $_{\beta}$, I $_{\beta}$, $\beta\gamma$ -coin. Deduced log ft. 1978Al01: ¹²N,measured E_{β} , I_{β} , $\beta\gamma$ -coin, $T_{1/2}$. Deduced β -branching, mirror asymmetries, ft. 1981Ka31: ¹²N, measured $\beta \gamma$ -coin, $\beta \gamma(t)$. Deduced I_{β} , $\log ft$. 1988Na09: 12 N, measured I_{β} , I_{γ} , $\beta\gamma$ -coin. Deduced mirror asymmetry. 12 B, 12 N deduced Gamow-Teller β -decay branching ratio. 1990Ca10: $^{12}N(\beta^+)$, measured spectral shape factors. 1991Li32: 12 N, measured β^- decay asymmetry. 1993Mi32: ${}^{12}N(\beta^+)$, measured $I_{\beta}(\theta)$. Deduced alignment coefficients. 1998Mi14: ${}^{12}N(\beta^+)$, measured β^- ray angular distribution from oriented nuclei. 1998Se04: $^{12}N(\beta^+)$, measured β^+ polarization asymmetry from decay of polarized nuclei. 1999Mi41,2000Mi11: $^{12}N(\beta^+)$, measured E_{β} , $I_{\beta}(\theta)$ from aligned nuclei. 2001Th18: $^{12}N(\beta^+)$, measured positrons longitudinal polarization following decay. 2002BoZY: $^{12}N(\beta^+p)$, analyzed β^- delayed multi-particle emission data. Deduced branching ratios, decay mechanism features. 2002Fy02,2003Fy02,2003Fy04,2004Fy02,2004Fy03: 12 N(EC), measured β^- delayed E_{α} , $\alpha\alpha$ -coin. 12 C level deduced three-body decay mechanism, excited states. 2002Mi01,2002Mi03,2002Mi36,2002Mi49,2003Mi24: $^{12}N(\beta^+)$, measured E_{β} , angular distributions from spin-aligned sources. 2004Bo43: $^{12}N(\beta^+)$, measured β^- delayed particle spectra, yields. ^{12}C deduced excited states particle-decay features. 2009Di06: $^{12}N(\beta^+)$, measured E_{α} , E_{γ} , $\alpha\alpha\alpha$ -coin. ^{12}C deduced levels, J, π , triple- α continuum states and their decay modes. R-matrix analysis. 2009Hy01,2009Hy02,2010Hy01: 12 N(β^+), measured E $_{\alpha}$, I $_{\alpha}$, E $_{\gamma}$, I $_{\gamma}$, E $_{\beta}$, $\beta\gamma$ -, $\beta\alpha$ -, $\alpha\alpha\alpha$ -coin. 12 C deduced levels, β feedings, and log ft. The authors performed two measurements of ^{12}N decay into α unbound states of ^{12}C using two different techniques. In addition ^{12}B decay was also measured. The first method involved implantation of ^{12}N into a thin carbon foil located in the center of a large solid angle Si Strip array (at IGSOL/JYFL) that measured breakup α particle kinematics; a HPGe detector mesured the $^{12}C*(4.44 \text{ MeV})$ de-excitation gamma-rays, and the measurement was normalized to the value presently adopted in ENSDF. The second method involved implantation of ^{12}N into a thick Si detector (at TRIuP/KVI) and measuring the total 3α decay energy. (2009Hy02) gives details of the JYFL measurement, while (2009Hy01) is reported as giving the most precise analysis of the KVI and JYFL measurements. (2010Hy01) gives a detailed multi-channel multi-level R-matrix analysis of 0^+ and 2^+ levels above the E_x =7.65 MeV level that may contribute to the shape of the 3α energy spectrum observed in ^{12}B and ^{12}N decay to ^{12}C . The analysis focuses mainly on these higher-lying state and is difficult to fold in with the analysis given in (2009Hy01,2009Hy02). A significant difference from the prior work is the assumption that the E_x =10.3 MeV bump (J^π =0⁺) is from interference; they suggest instead the J^π =0⁺/₃ state at E_x =11.2 MeV 3 with Γ =1.5 MeV 6. #### ¹²C Levels | E(level) | $J^{\pi^{\dagger}}$ | Γ [†] | |------------------------|---------------------|----------------------------| | 0 | 0+ | | | 4439.82 <i>31</i> | 2+ | 10.8×10 ^{−3} eV 6 | | 7654.07 19 | 0_{+} | 9.3 eV 9 | | $10.3 \times 10^3 \ 3$ | (0^+) | 3.0 MeV 7 | | 12710 | 1+ | 18.1 eV 28 | | 15110 | 1+ | 43.6 eV 10 | [†] From Adopted Levels. #### $^{12}{\rm N}\,\beta^+$ decay:11.000 ms 1981Ka31,2009Hy01 (continued) # ε, β^+ radiations | E(decay) | E(level) | $I\beta^{+\dagger}$ | $\mathbb{I}\varepsilon^{\dagger}$ | Log ft | $I(\varepsilon + \beta^+)^{\dagger}$ | Comments | |-------------------------|----------|---------------------|-----------------------------------|----------|--------------------------------------|--| | (2228.1 10) | 15110 | 0.0023 15 | 4.×10 ⁻⁶ 3 | 3.6 3 | 2.3×10 ⁻³ 15 | av Eβ=495.21 45; εK=0.001824 5; εL=0.0001020
3
Iε: From average of (2009Hy01) and (1967Al03) | | (4628.1 10) | 12710 | 0.120 3 | | 3.924 11 | 0.120 3 | See discussion in Table 12.42 of (2017Ke05). av $E\beta$ =1624.94 49 I ε : Mainly from the KVI data in (2009Hy01). See | | $(7.0 \times 10^3 \ 3)$ | 10300 | 0.403 9 | | 4.42 11 | 0.403 9 | other values in Table 12.42 of (2017Ke05). av $E\beta$ =2.80×10 ³ 15 I ε : From weighted average of 0.38 5 (JYFL) and | | | | | | | | 0.404 9 (KVI). In (2009Hy01) this is listed as the sum of feeding to E_x =9-12 MeV. See discussion in Table 12.42 in (2017Ke05). | | | | | | | | In (2010Hy01) the authors indicate that the $J^{\pi}=0_3^+$ resonance has parameters $E_x=11.2$ MeV 3 with $\Gamma=1.5$ MeV 6, suggesting that the previously observed $E_x=10.3$ MeV bump results | | | | | | | | from interference. They further indicate that the $J^{\pi}=2^{+}_{2}$ resonance has parameters $E_{x}=11.1$ MeV 3 and $\Gamma=1.4$ MeV 4. In addition, for these two | | | | | | | | states (2010Hy01) find B(>)=0.06 2 and B(>)=0.05 3 (log $ft=4.82$ 18 and log $ft=4.90$ 40) for the $J^{\pi}=0^{+}_{3}$ and 2^{+}_{2} states, respectively. | | (9684.0 10) | 7654.07 | 1.41 3 | | 4.622 10 | 1.41 3 | av E β =4113.48 51 IE: from (KVI) in (2009Hy01). See other values in Table 12.42 of (2017Ke05). | | (12898.3 11) | 4439.82 | 1.898 32 | | 5.148 8 | 1.898 32 | av E β =5711.13 I ϵ : I β (4440) is used as a global normalization in most measurements. | | | | | | | | Iε: We adopt $I\beta$ =1.898 32 from (1981Ka31) since the experimental approach aimed to overcome most systematic effects that influence the value. | | (17338.1 10) | 0 | 96.17 5 | | 4.1106 7 | 96.17 5 | For other values see Table 12.23 in (2017Ke05). av Eβ=7922.87 Iε: unity minus the sum of branching to higher states. See discussion in (2017Ke05) Table 12.42. | [†] Absolute intensity per 100 decays. # $\gamma(^{12}C)$ | E_{γ}^{\dagger} | I_{γ}^{\ddagger} | E_i (level) | \mathbf{J}_i^{π} | $\mathbf{E}_f \mathbf{J}_f^{\pi}$ | Comments | |------------------------|-------------------------|--------------------|----------------------|------------------------------------|--| | | | 7654.07
4439.82 | | | I_{γ} : From Γγ/Γ=(4.16 11)×10 ⁻⁴ and $I\beta$ =(1.41 3)%. | [†] From Adopted Gammas. ‡ Absolute intensity per 100 decays. ## 12 N β^+ decay:11.000 ms 1981Ka31,2009Hy01 ## Decay Scheme Legend Intensities: $$I_{\gamma}$$ per 100 parent decays $$\%\varepsilon + \%\beta^{+} = 100 / \frac{1^{+} \qquad 0.0}{Q^{+} = 17338.1 \ 10} 11.000 \ \text{ms} \ 16$$ $$\frac{12}{7} N_{5}$$